Hamiltonicity of locally hamiltonian and locally traceable graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traceability of locally hamiltonian and locally traceable graphs

If P is a given graph property, we say that a graph G is locally P if 〈N(v)〉 has property P for every v ∈ V (G) where 〈N(v)〉 is the induced graph on the open neighbourhood of the vertex v. Pareek and Skupień (C. M. Pareek and Z. Skupień, On the smallest non-Hamiltonian locally Hamiltonian graph, J. Univ. Kuwait (Sci.), 10:9 17, 1983) posed the following two questions. Question 1 Is 9 the smalle...

متن کامل

Hamiltonicity of k-Traceable Graphs

Let G be a graph. A Hamilton path in G is a path containing every vertex of G. The graph G is traceable if it contains a Hamilton path, while G is k-traceable if every induced subgraph of G of order k is traceable. In this paper, we study hamiltonicity of k-traceable graphs. For k ≥ 2 an integer, we define H(k) to be the largest integer such that there exists a k-traceable graph of order H(k) t...

متن کامل

Hamiltonicity in Locally Finite Graphs: Two Extensions and a Counterexample

We state a sufficient condition for the square of a locally finite graph to contain a Hamilton circle, extending a result of Harary and Schwenk about finite graphs. We also give an alternative proof of an extension to locally finite graphs of the result of Chartrand and Harary that a finite graph not containing K4 or K2,3 as a minor is Hamiltonian if and only if it is 2-connected. We show furth...

متن کامل

Hamiltonian N2-locally connected claw-free graphs

A graph G is N2-locally connected if for every vertex v in G, the edges not incident with v but having at least one end adjacent to v in G induce a connected graph. In 1990, Ryjác̆ek conjectured that every 3-connected N2-locally connected claw-free graph is hamiltonian. This conjecture is proved in this note.

متن کامل

A sufficient condition for Hamiltonicity in locally finite graphs

Using topological circles in the Freudenthal compactification of a graph as infinite cycles, we extend to locally finite graphs a result of Oberly and Sumner on the Hamiltonicity of finite graphs. This answers a question of Stein, and gives a sufficient condition for Hamiltonicity in locally finite graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2018

ISSN: 0166-218X

DOI: 10.1016/j.dam.2017.10.030